Web Document Classification Based on Fuzzy Association

نویسندگان

  • Choochart Haruechaiyasak
  • Mei-Ling Shyu
  • Shu-Ching Chen
  • Xiuqi Li
چکیده

In this paper, a method of automatically classifying Web documents into a set of categories using the fuzzy association concept is proposed. Using the same word or vocabulary to describe different entities creates ambiguity, especially in the Web environment where the user population is large. To solve this problem, fuzzy association is used to capture the relationships among different index terms or keywords in the documents, i.e., each pair of words has an associated value to distinguish itself from the others. Therefore, the ambiguity in word usage is avoided. Experiments using data sets collected from two Web portals: Yahoo! (www.yahoo.com) and Open Directory Project (dmoz.org) are conducted. We compare our approach to the vector space model with the cosine coefficient. The results show that our approach yields higher accuracy compared to the vector space model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Approach for Web Document Classification

The web is a huge repository of information and there is a need for categorizing web documents to facilitate the search and retrieval of documents. Web document classification plays an important role in information organization and retrieval.This paper presents a fuzzy set based approach for automatically classifying web documents into one of the classes represented by a set of training documen...

متن کامل

WebGD: A CORBA-based Document Classification and Retrieval System on the Web

This paper presents the design and implementation of the WebGD, a CORBA-based document classification and retrieval system on Internet. The WebGD makes use of such techniques as Web, CORBA, Java, NLP, fuzzy technique, knowledge-based processing and database technology. Unified classification and retrieval model, classifying and retrieving with one reasoning engine and flexible working mode conf...

متن کامل

A New Document Embedding Method for News Classification

Abstract- Text classification is one of the main tasks of natural language processing (NLP). In this task, documents are classified into pre-defined categories. There is lots of news spreading on the web. A text classifier can categorize news automatically and this facilitates and accelerates access to the news. The first step in text classification is to represent documents in a suitable way t...

متن کامل

EXTRACTION-BASED TEXT SUMMARIZATION USING FUZZY ANALYSIS

Due to the explosive growth of the world-wide web, automatictext summarization has become an essential tool for web users. In this paperwe present a novel approach for creating text summaries. Using fuzzy logicand word-net, our model extracts the most relevant sentences from an originaldocument. The approach utilizes fuzzy measures and inference on theextracted textual information from the docu...

متن کامل

Optimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining

The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002